A graph theoretic proof of the complexity of colouring by a local tournament with at least two directed cycles
نویسندگان
چکیده
In this paper we give a graph theoretic proof of the fact that deciding whether a homomorphism exists to a fixed local tournament with at least two directed cycles is NP-complete. One of the main reasons for the graph theoretic proof is that it showcases all of the techniques that have been built up over the years in the study of the digraph homomorphism problem.
منابع مشابه
A note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
متن کاملSome results on a supergraph of the comaximal ideal graph of a commutative ring
Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...
متن کاملDisjoint 3-Cycles in Tournaments: A Proof of The Bermond-Thomassen Conjecture for Tournaments
We prove that every tournament with minimum out-degree at least 2k− 1 contains k disjoint 3-cycles. This provides additional support for the conjecture by Bermond and Thomassen that every digraph D of minimum out-degree 2k − 1 contains k vertex disjoint cycles. We also prove that for every > 0, when k is large enough, every tournament with minimum out-degree at least (1.5+ )k contains k disjoin...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملVertex-Disjoint Subtournaments of Prescribed Minimum Outdegree or Minimum Semidegree: Proof for Tournaments of a Conjecture of Stiebitz
It was proved Bessy et al., 2010 that for r ≥ 1, a tournament with minimum semidegree at least 2r − 1 contains at least r vertex-disjoint directed triangles. It was also proved Lichiardopol, 2010 that for integers q ≥ 3 and r ≥ 1, every tournament with minimum semidegree at least q − 1 r − 1 contains at least r vertex-disjoint directed cycles of length q. None information was given on these dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Contributions to Discrete Mathematics
دوره 6 شماره
صفحات -
تاریخ انتشار 2011